AD-AL20 267 MASSACHUSETTS UNIV AMHERST DEPT OF ELECTRICAL AND C=-=ETC F/6 12/1
ON THE INSTABILITY OF THE SLOTTED ALOHA MULTIACCESS ALGORITHM.(U)
AUG 82 W A ROSENKRANTZs D TOWSLE AFOSR=-82-0167 !

UNCLASSIFIED AFOSR-TR-BZ—OB“B

| e
A s




e

AFOSR-TR- 82-08438

e On The Instability of the Slotted ALOHA
O Multiaccess  Algorithm
C:QI by
=i
< (1)
Walter A. Rosenkrantz
Q
<

Department of Mathematics and Statistics

University of Massachusetts

Amherst, Massachusetts 01003

and

Donald Tows1ey(2)
Department of Electrical and Computer Engineering

University of Massachusetts

Amherst, Massachusetts 01003

Abstract: The slotted ALOHA multiaccess

algorithm for the infinite
user model is shown to be unstable via a martingale method
of independent interest. Consequently the hypothesis of

statistical equilibrium used to calculate the maximum
throughput is not valid.

,‘&
(Vsupported by AFOSR grant No. 82-0167  (413) 545-1302 DT

}1 &
| ELECT
(2)gipported by NSF grant No. ECS-7921140 (413) 545-0766 @ ’

;”%\ 0CT 1 3 1962 3
Note: The preferred address for correspondence is that of /
Professor Rosenkrantz

A

Lopr
m for puy

10 rel‘
mh‘ted. ase H

82 10 12 136

£ e i A 3 0 S

-




C D .

i SECURITY CLASSH ICATION OF THIS PAGE (When Date Entered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE A INSTRUCTIONS
[T, REPORI.NUME 7. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER g
AYOSRTR- 82-0848 5 7 "." b 057 ;

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED '

ON THE INSTABILITY OF THE SLOTTED ALOHA TECHNICAL ,

MULTIACCESS ALGORITHM 6. PERFORMING OG. REPORT NUMBER '
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) '

W.A. Rosenkrantz and Don Towsley AFOSR-82-0167

9. PERFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Department of Mathematics & Statistics AREA 8 WORK UNIT NUMBERS

University of Massachusetts PE61102F; 2304/A5 ]

Amherst MA 01003 I
11. CONTROLLING OFF|CE NAME AND ADDRESS 12. REPORT DATE l!

Directorate of Mathematical & Information Sciences | 19 August 1982

Air Force Office of Scientific Research 13. NUMBER OF PAGES

Bolling AFB DC 20332 8 !
| MONITORING AGENCY NAME & ADDRESS(If different from Controlling Oftice) 15. SECURITY CL ASS. (of this report) '

UNCLASSIFIED
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

3 17. DISTRIBUTION STATEMENT (of the abastract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse side If necessary and identily by block number)

Slottea ALOHA Multiaccess Algorithm; Transient Markov Chain; Supermartingale
Generating Function,

20. ABSTRACT (Continue on reverse side If necessary and identify by dlock number)
> The slotted ALOHA multiaccess algorithm for the infinite user model is shown to
be unstable via a martingale method of independent interest. Consequently, the

1 hypothesis of statistical equilibrium used to calculate the maximum throughput
is not valid,

DD ':2:‘!” 1473 =oimion oF 1 nOV 68 13 OBSOLETE

J‘ SECURITY CLASSIFICATION OF TRIS PAGE (When Dete Entered)

M— asuiiiniti i e




I. Introduction

In his paper [7] Massey noted that there was neither mathematical nor
experimental justification for the hypothesis of statistical equilibrium
assumed by Abramson and others in their calculation of the maximum throughput

of the slotted ALOHA multiaccess algorithm. Now the opposite of statistical

equilibrium is instability which in the present context means the number
of blocked terminals becomes infinite with probability one as time tends to i
jnfinity. Using simulations Kleinrock and Lam [5] noted that the uncontrolled
slotted ALOHA scheme is unstable. A mathematical proof of this fact was
offered by Fayolle et al. [2] using a Markov chain model to describe the
number of blocked terminals. Translated into the language of Markov chains
instability as defined above is equivalent to showing that the Markov chain

is transient, see e.g. Karlin and Taylor [4] for the necessary definitions and :;
background. In particular we remind the reader of the well known fact that an

irreducible aperiodic Markov chain falls into one of three mutually exclusive |

(and exhaustive) classes: positive recurrent, null recurrent and transient,

see e.g. Karlin and Taylor op. cit.

Now Fayolle et al [2] showed that the Markov chain occurring in their

model of the slotted ALOHA scheme is not positive recurrent from which they
erroneously include that the Markov chain is transient. Unfortunately they
did not exclude the possibility that it might be null recurrent. Nevertheless
their assertion that the Markov chain is transient is correct and we present
in this paper a novel proof of this fact based upon a martingale method of
independent interest. The elementary facts c:«1cerning martingales and

Markov chains that we shall need are summarized in part Il and the application

to the Markov chain model of Fayolle e;&{M&o&HmW&P&MMdW‘
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II. Transient Markov Chains - A Martingale Approach

In this section we present a well known method (at least to Probabilists) .
for constructing a supermartingale associated to a Markov chain which leads to H
a simple sufficient condition for a Markov chain to be transient.

Let {X,, k =0,1,2,...} denote a Markov chain with state space the non
negative integers I+ = {0,1,2,...} and transition matrix Pij = P(xk+] = j[Xk=i).
In addition we assume that the Markov chain is irreducible and aperiodic. Now
if X} is recurrent (whether it is positive or null recurrent is immaterial)
then the even {Xk = j} occurs infinitely often (abbreviated i.0.) with pro-
bability one for any state j. Suppose we can construct a non negative,

non constant function f:17 » R* = [ 0,=) satisfying the following sequence of !

inequalities:

(1) T Py5F(3) < f(3) for every i ¢ 1" :
j=o

Now E(f(xk+1)|xk = 1) =jzo Pijf(j) < f(i) = f(xk) and by the Markov property f
(2) E(f(xk+])lxo,., X ) = E(f(xk+])lxk) < f(xk). Consequently the sequence f
of random variable f(Xk) is a non negative supermartingale with respect k
to {X 1, see e.g. Karlin and Tayior (4], Definition 1.2, p. 239 or the {
more general definition to be found in Doob [1]. We shall call f a
supermartingale generating function.
(3) .Theorem (Doob): A non negative supermartingale converges with probability
one.
This is a basic result in martingale theory and we refer the reader to
Doob [1] for the proof.
(4) Theorem. Suppose the irreducible aperiodic Markov chain {Xk} admits a
non constant, non negative supermartingale generating

function f. Then the Markov chain is transient i.e., P(1im X = =) =1,
K > =
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Assume to the contrary that {Xk} is recurrent and let Jo#J1 be any two
states for which f(jo)ff(jl) (since f is non constant such a pair exists,
by hypothesis). Now recurrence implies that x;=j0 and Xk = j] i.o.
with probability one and hence f(Xk) = f(jo) and f(Xk) = 3y i.0. with
probability one. But this implies that lim f(Xk) does not exist

+ o

because f(jo)# f(j]) and this contradicts Doob's martingale convergence

theorem (3).

Instability of the slotted ALOHA scheme via a martingale generating function.

We now apply the results of part 2 to the study of the slotted
ALOHA scheme as presented in Fayolle et al [2]. First, some notation:

let Xk

and Ak 4 the number of new packets that arrive during the kth time

e

the number of packets awaiting to be transmitted at time k

interval. We make the following standard assumptions:

Ao’Al""Ak’ are i.i.d. random variables with probability distribution

P(Ak =J) = x;, 1 =0,1,2... and moment generating function
olg) = §ael.
j=o
The Ak‘s are independent of the Xk's and when a new packet arrives
th

J"

during the k™" interval it is transmitted in the next time interval;

thus, two or more arrivals at time k lead to a collision at time k + 1.
If a terminal is blocked at time k it retransmits with probability

P, o<p<l, at time k + 1 and each terminal acts independently of the

others.

Under these assumptions it is easy to see that the process
{Xk} is a Markov chain with transition Matrix P1j given by

poj =Xy j>0

Piiy = Aoip(1-p)1-]

Pij = 0, jzi-2

Pig = hgei (-p) + g 0-00)7 - dp(1-p) 1™




(10)

(1)

(12)

Case 1: a = supiip(I-p)

. -1 L
+ '\j-i""i 'lp(]-P) s Jf_] -
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To insure the Markov chain is aperiodic and irreducible it suffices to assume

0<)‘0<10

Construction of the supermartingale generating function f:

We try a solution of the form

f(3) = gj for some &, o<g<l. There are two cases to consider:

e

Case 2: Since lim ip(]-p)i']=0 there exists i  such that ip(]-p)i-]
w'(I;»z)r i»i*, |

Theorem: (a) If ¢'(1) > a then there exists a £, o<f<l such that

f(j)=€j is a supermartingale generating function; (b) If y{(1)<a

then there exists an integer 1" such that f(j)=1, o<j<i" and (J)

£j'i*, j>i* is a supermartinga]e generating function.
Case 1: Note that 2 PoJf { AL éJ W& )<1=f(0) so inequality
j=o J=0
is certainly satisfied when i=o. Turn1ng now to the case i>0 we
o0 o0
i 1111 k+1
have | Pijg —jzi-l P1J = A 1p(1 p) + E Ak(l ~ip(1l- p) )

Jj=o

T . i-1, k+i
+ 7 AL, ip(1-p) T =
k=0 k+l

. ) . © ) s © ) i1 k
R O e WO RL TSR L S S W TR B L
° k=0 k=0 <

Note that | M (1-ip(1-p) Ty ek < g(1mip(1-p) 1Yy kz AEF =
=0 =0

= g(1-ip(1-p) " Hyy(e) and that Z kk+1 ip(1- p)1 “lgkdl,
ip(-p)i-1 Z Xkﬁ = ip(1-p) - 1(¢(c,) M) Uponsu1tablyrearrang1ng
terms we obtaln the formula

Z P E . V‘(S)f‘;(l-ip(l—p)i'l) + ip(]-p)i‘1}
j=o

{ sty ota
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consequently f(j)=;J will be a supermartingale generating function

provided

f (13) 7 Ny(e)iati-ip(1-p) T Hrip(1-p) Th<e, equivalently y

(14) w(g)gﬁ/{&(l—ip(l-p)i'l) + ip(l-p)i'l}, i=1,2... Denote the function

occurring on the right hand side of (14) by ¢i(£) and set 1'p(1-p)1'1

= e, noting that lim ip(l-p)1-1=

on [0,1], ¢i'(1)=niisupiai = a <y ‘(1) and that a>a, implies ¢i(£)

0. Observe that ¢i is concave

<&/{g(1-a)+a} on [0,1]. Consequently h(g) = W(£)-(&/{€(1-a)+a}]
is convex on[0,1] with h{0) = A;>0, h(1} = 0 and h'(1) = 0 and
h'(1) = y'(1) - a > 0. Therefore there exists a £*,0<g*<1 such
that h(£)<o on the open interval (£*l) and this implies that

W) - 8;(E)< h(£)<0 for all £ in (£*,1) and 211 i, so y(£)<g,(£)
for at least one& in (£*,1). This completes the construction of
the supermartingale generating function f in case 1.

Case 2: Since }iﬂ ¢i'(1) = }iz a, = 0 it follows there exists
an i such that a,<y'(1)all i>i*. If we now set f(j)=1 for 13
0<j<i* and £(3) = €977 for j> i and
0<£<1 then the inequalities _io ijiji 1=f(i), 0<i<i* are auto-

matically satisfied whilst for i>i* the same calculation as in

case 1 leads to the condition

(18') o(E)<eLe(1-1p(1-p)  P)+ip(1-p) 711, i>i* for some € in (0,1). ‘.

P
By choosing i* so that sup ¢'(1) = sup a; <y ‘(1) the same rea-g
>i* i>i* :

soning using in case 1 may be applied here to conclude that r

condition (14') is satisfied. The proof is finished. T .
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Concluding Remarks i
It is interesting to note that martingale methods may also be used t

L]

to prove stability. In the context of Markov Chains this was already 1

done by Lamperti [6] and for applications to the control of queueing

processes see the forth ccming paper by Hajek [3].
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